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Recently, there has been significant effort directed toward the 
,selective oxidation of DNA by metal complexes.1-3 Significant 
progress has been made in achieving selectivity by altering the 
binding specificity of the complex by appropriate tailoring of the 
ligands, leading to shape-selective cleavage.4 In contrast, little 
effort has been directed toward achieving selectivity by altering 
the reactivity of the metal complex. Burrows and Rokita have 
developed a nickel complex which, in the presence of persulfate, 
can oxidize guanine bases, leading to guanine-selective cleavage 
in single-stranded DNA.5 We have been interested in determining 
whether altering the reactivity of complexes that cleave DNA via 
sugar oxidation could lead to an increase in the specificity of 
cleavage of double-stranded DNA. We have been studying the 
stoichiometric and electrocatalytic oxidation of DNA by ox-
opolypyridyl complexes of ruthenium(I V) based on Ru(tpy)(bpy)-
O2+ (1) and Ru(bpy)2(py)02+ (2) (tpy = 2,2',2"-terpyridine, 
bpy = 2,2'-bipyridine) .6 These complexes oxidize DNA efficiently 
to generate the corresponding aquaruthenium(II) forms, which 
are readily reoxidized to the active Ru(IV)O forms. We report 
here on studies of related complexes, Ru(bpy)2(EtG)02+ (EtG 
= 9-ethylguanine) and Ru(bpy)2(dmap)02+ (dmap = 4-(dim-
ethylamino)pyridine), which exhibit a startling specificity for 
oxidation of thymidine sugars. 

We have reported previously that oxidation of calf thymus 
DNA by 1 leads to release of free base as detected by HPLC with 
significant amounts of all four bases released.7 The release of 
nucleic acid bases is indicative of chemistry occurring via 
abstraction of a hydrogen atom from one of several positions on 
the deoxyribose ring.8 Quantitation of the released bases accounts 
for 10% of the total ruthenium concentration.9 Identical results 
are observed for oxidation of calf thymus DNA by 2. 

We have reported the synthesis of Ru(bpy)2(EtG)OH2
2+,10 

which we have been studying as a model for covalent binding 
reactions.11 This complex can be oxidized to the reactive Ru-
(IV)O form, Ru(bpy)2(EtG)02+ (3), at a potential of £1/2(IV/II) 
= 0.43 V vs SSCE, which is 210 mV lower than that required 
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Figure 1. HPLC of the products of the electrocatalytic reaction of 3 with 
DNA at an applied potential of 0.8 V. Chromatography was performed 
on a Rainin Microsorb-MV "Short One" Cl8 column with 0.1 M 
ammonium formate buffer, pH 7. The retention times of the other bases 
under these conditions are cytosine, 2.2 min; guanine, 4.33 min; and 
adenine, 11.5 min. 

for 1. Complex 3 is significantly less reactive than 1; for example, 
1 is an efficient oxidant of 2-propanol,12 while solutions of 3 are 
stable in the presence of 2-propanol. Thus far, we have not been 
able to isolate 3 in the solid state, so studies of DNA oxidation 
reactions have been performed electrocatalytically, by electro­
chemical oxidation at 0.8 V of solutions of Ru(bpy)2(EtG)OH2

2+ 

in the presence of calf thymus DNA. Analysis of HPLC of these 
oxidations performed in argon-degassed solution provides the 
results shown in Figure I.13 Surprisingly, the only nucleic acid 
base released is thymine. Quantitation of the thymine released 
reveals a 12% efficiency for sugar oxidation. Thus, for both 1 
and 3, the yield of base release is the same, but only thymidine 
sugars are oxidized by 3, while all four sugars are oxidized by 1, 
at least via the pathway that leads to immediate base release. 

To rule out specific recognition by the ethylguanine ligand as 
the mechanism of thymidine specificity, the complex Ru(bpy)2-
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Table I. Influence of Redox Potential on Base Release from DNA 
Oxidation by M(IV)O2+ Complexes 

complex 
(tpy)(bpy)Ru02+ (l 
(bpy)2(py)Ru02+ (2) 
(bpy)2(EtG)Ru02+ (3) 
(bpy)2(dmap)Ru02+ (4) 
(tpy)(bpy)Os02+ (5) 

£1/2(IV/II) 
V vs SSCE 

0.56 
0.48 
0.43 
0.46 
0.23 

bases 
released 

A, T, G, C 
A, T, G, C 
T 
T 
none 

(dmap)OH22+ was prepared.14 The spectral and electrochemical 
properties are nearly identical to those of the thymidine-specific 
complex 3, but the structure differs from that of the nonspecific 
complex 2 only by the addition of a single dimethylamino group, 
which would not be expected to exhibit special DNA-recognition 
properties. Analogous reactions using Ru(bpy)2(dmap)02+ (4) 
lead to the release of only thymine, as seen with 3. No base 
release was detected upon reaction with DNA of Os(tpy)(bpy)-
O2+ (5) for which £,/2(IV/II) = 0.23 V (Table I).15 

The thymidine-specific reaction does not lead to frank strand 
scission. Oxidation of the self-complementary hexanucleotide 
d(CAGCTG)2 by 3 leads to the release of thymine, again in 10% 
yield based on the concentration of 3; however, no deoxyguanosine 
5'-monophosphate (5'-dGMP) was detected concomitantly with 
release of thymine.16 The thymine-specific oxidation therefore 
produces a relatively stable depyrimidinated lesion, which would 
be consistent with oxidation of the DNA at one of the several 
positions on the deoxyribose ring, including oxidation at the 1' 
position to yield a stable 2-deoxyribonolactone residue.8'17 

The results summarized in Table I show strikingly that simple 
alteration of the reactivity of the M(IV)O oxidant dramatically 
alters the specificity of sugar oxidation. The binding affinity of 

(13) Oxidation reactions using RuOH2
2+ and OsOH2

2+ complexes (0.05 
mM) and calf thymus DNA (1.0 mM) were performed in pH 7 phosphate 
buffer at an ionic strength of 50 mM. Reactions were performed in a three-
compartment cell with a reticulated vitreous carbon working electrode at an 
applied potential of 0.8 V. Release of all four bases is observed with 1 and 
2 in both electrocatalytic and stoichiometric oxidations. 
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2+ is the aquation product of [Ru(bpy)2(dmap)-

(NCMe)] (PF6)2, which was synthesized by analogy to [Ru(bpy)2(py)(OH2)]-
(PF6)2. Moyer, B. A.; Meyer, T. J. Inorg. Chem. 1981, 20, 436-144. Anal. 
Calcd for [Ru(bpy)2(dmap)(NCMe)](PF6)2: C, 40.2; H, 3.37; N, 11.31. 
Found: C, 39.7; H, 3.22; N, 10.61. 
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Ru(bpy)2(EtG)OH2
2+ (KB = 2300 M"1)18 is modest and is between 

thoseof Ru(tpy)(bpy)OH2
2+ (AT8 = 660 M"1) and Ru(tpy)(phen)-

OH2
2+ (AT8 = 3700 M"1);7 oxidation of calf thymus DNA by 

Ru(tpy)(phen)02+ (£i/2(IV/II) = 0.56 V) gives results identical 
to those for 1. Addition of a single dimethylamino group to the 
pyridine ligand of 2 converts the complex from a nonspecific 
oxidant to a specific oxidant. Thus, it seems certain that the 
lower oxidation potential is the source of the specificity. We are 
exploring two mechanisms for the thymidine specificity. First, 
the sugar oxidation may occur at the l'-position,8a'17 where the 
reactivity would be strongly influenced by the nature of the 
coordinated base. Second, the structure of thymidine sugars may 
permit close approach of the oxo group to sugar hydrogens, and 
the low oxidation potential may necessitate a close approach in 
order for oxidation to occur. In either case, it appears that the 
combination of new advances in control of binding1 with the ability 
to tune the reactivity of the metal complexes may provide an 
increasingly diverse repertoire of selective DNA damage agents. 
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